Author Affiliations
Abstract
1 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
2 Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka, Japan
3 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
4 Department of Advanced Photon Research, Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, 619-0215 Kyoto, Japan
5 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China
6 Department of Astronomy, Beijing Normal University, Beijing 100875, China
7 Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
8 Shanghai Institute of Laser Plasma, Shanghai 201800, China
9 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
The Zeeman splitting effect is observed in a strong magnetic field generated by a laser-driven coil. The expanding plasma from the coil wire surface is concentrated at the coil center and interacts with the simultaneously generated magnetic field. The Cu I spectral lines at wavelengths of 510.5541, 515.3235, and 521.8202 nm are detected and analyzed. The splittings of spectral lines are used to estimate the magnetic field strength at the coil center as ∼31.4 ± 15.7 T at a laser intensity of ∼5.6 × 1015 W/cm2, which agrees well with measurements using a B-dot probe. Some other plasma parameters of the central plasma disk are also studied. The temperature is evaluated from the Cu I spectral line intensity ratio, while the electron density is estimated from the Stark broadening effect.
Matter and Radiation at Extremes
2022, 7(2): 024402
贾文昕 1韩森 2,3,*张凌华 2韩博 3[ ... ]朱怀康 2
作者单位
摘要
1 苏州科技大学物理科学与技术学院, 江苏 苏州 215009
2 上海理工大学光电信息与计算机工程学院, 上海 200093
3 苏州慧利仪器有限责任公司, 江苏 苏州 215123
为了实现对离轴椭圆柱面镜面形的高精度检测,提出一种无像差点法和计算全息法相结合的混合式干涉测量方法。针对离轴椭圆柱面镜的特殊面形,将由平面镜与计算全息图(CGH)高度集合而成的标准柱面镜(TC)的出射柱面波作为检测光,并将光轴移至入射一侧的椭圆焦点与离轴椭圆柱面镜中心的连线方向,以减少测量光路的相对口径。再利用椭圆的一对无像差共轭点,实现干涉测量。将离轴椭圆柱面镜作为光轴上具有6个自由度的空间刚体,推导出误差分离矩阵。从波像差理论出发,推算出调整量引起的调整误差的各部分参数,确定了干涉测量方法中的调整量。实验结果表明,该测量方法可以有效地实现离轴椭圆柱面镜形貌的测量,利用误差分离矩阵可以推导出调整误差参数,便于进一步的系统误差分析与校正。
测量 非球面 光学检测 干涉测量 调整误差 
光学学报
2021, 41(20): 2012004
作者单位
摘要
1 阜阳师范大学 计算机与信息工程院,安徽阜阳236037
2 厦门大学 航空航天学院,福建厦门36110
提出一种基于BCD工艺用于检测微弱光信号的单光子雪崩光电二极管(SPAD)及前端淬灭-复位电路(QRC)。为减小边缘击穿的风险,提高响应度,设计了一种圆形P+/Nwell/Deep Nwell结构SPAD,Deep Nwell和衬底之间形成的pn结,能够有效减少p衬底流向雪崩区的暗电流,降低暗计数率,也保证了较小的纵向渡越时间,提高了响应速度。同时设计了P阱保护环,增大了器件的击穿电压。采用silvaco对器件进行二维仿真,与传统的P+/Nwell结构以及P+/Nwell/BNwell结构进行了比较,验证了设计结构在击穿电压、响应度方面的优越性。为实现光电探测器与集成电路的协同设计,改进了APD光电器件的等效电路模型并在此基础上设计了主动淬灭复位电路,死时间约为2.6 ns,能够达到快速探测的目的。测试结果表明,P+/Nwell/DNwell结构的雪崩击穿电压为15.8 V,在过电压为0.2 V时,650 nm光照射下,响应度约为0.80 A/W,暗计数率为20 kHz。
单光子雪崩光电二极管 光电集成 BCD工艺 响应度 飞行时间传感器 single photon avalanche photodiode optoelectronic integration BCD technology responsivity time-of-flight sensor 
光学 精密工程
2021, 29(2): 267
Author Affiliations
Abstract
1 Department of Astronomy, Beijing Normal University, Beijing100875, China
2 College of Physics and Electronic Engineering, Qilu Normal University, Jinan250200, China
3 CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing100101, China
4 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing101408, China
5 Graduate School of China Academy of Engineering Physics, Beijing100196, China
6 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai200240, China
In this paper, we present a reanalysis of the silicon He-$\mathrm{\alpha}$ X-ray spectrum emission in Fujioka et al.’s 2009 photoionization experiment. The computations were performed with our radiative-collisional code, RCF. The central ingredients of our computations are accurate atomic data, inclusion of satellite lines from doubly excited states and accounting for the reabsorption of the emitted photons on their way to the spectrometer. With all these elements included, the simulated spectrum turns out to be in good agreement with the experimental spectrum.
high-energy-density physics laboratory astrophysics laser–plasma interaction 
High Power Laser Science and Engineering
2021, 9(1): 010000e9
作者单位
摘要
宁夏大学,宁夏光伏材料重点实验室,银川 750021
定向凝固法制备的多晶硅是目前主要的光伏原材料,制备过程中热场结构和硅熔体对流形态对于生长高质量的多晶硅极为重要,本文利用专业晶体生长软件CGSim 对制备太阳能级多晶硅用真空感应铸锭炉中的石墨坩埚进行改进并进行了数值模拟,分析了不同石墨坩埚厚度的变化对热场、流场、固液界面、硅晶体应力场以及和V/G值的影响。结果表明,当石墨坩埚厚度为20 mm,可获得良好的对流形态、平坦的固液界面、合理的V/G值等,有利于节约多晶硅的生产成本并提高多晶硅的品质,为生产实践中工艺方案优化及缺陷分析等提供重要的理论依据。
多晶硅 固液界面 石墨坩埚 定向凝固 数值模拟 polycrystalline silicon solid-liquid interface graphite crucible directional solidification numerical simulation 
人工晶体学报
2020, 49(10): 1904
作者单位
摘要
北京师范大学 天文系 实验室天体物理研究组,北京 100875
实验室天体物理是交叉于高能量密度等离子体物理学与天体物理学之间的一个新的学科生长点。利用强激光装置可以在实验室创造与某些天体或天体周围相似的极端物理环境,这样的实验条件前所未有,且与天体物理中诸多重要的物理现象直接对应。通过近距、主动、参数可控的研究,实验室天体物理有助于解决目前天体物理和等离子体物理中的一些关键的、共性的问题,并有望取得突破性成果。针对近年来国内外在该领域取得的最新研究进展进行介绍,并就将来可能开展的研究方向进行展望。
实验室天体物理 强激光 磁重联 不透明度 喷流 laboratory astrophysics intense lasers magnetic reconnection opacity jet 
强激光与粒子束
2020, 32(9): 092003
Author Affiliations
Abstract
1 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
2 National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3 Department of Astronomy, Beijing Normal University, Beijing 100875, China
4 Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
5 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
6 INPAC and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China
7 Shanghai Institute of Laser Plasma, Shanghai 201800, China
8 Research Center for Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
9 National Laboratory on High Power Laser and Physics, Chinese Academy of Sciences, Shanghai 201800, China
10 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 101408, China
11 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.
collisionless shock electromagnetic field high power lasers laboratory astrophysics 
High Power Laser Science and Engineering
2018, 6(3): 03000e45
Author Affiliations
Abstract
1 Department of Astronomy, Beijing Normal University, Beijing 100875, China
2 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
Laser-driven magnetic reconnection (LDMR) occurring with self-generated B fields has been experimentally and theoretically studied extensively, where strong B fields of more than megagauss are spontaneously generated in high-power laser–plasma interactions, which are located on the target surface and produced by non-parallel temperature and density gradients of expanding plasmas. For properties of the short-lived and strong B fields in laser plasmas, LDMR opened up a new territory in a parameter regime that has never been exploited before. Here we review the recent results of LDMR taking place in both high and low plasma beta environments. We aim to understand the basic physics processes of magnetic reconnection, such as particle accelerations, scale of the diffusion region, and guide field effects. Some applications of experimental results are also given especially for space and solar plasmas.
high energy density physics laser plasmas interaction plasmas astrophysics 
High Power Laser Science and Engineering
2018, 6(3): 03000e48
Zhe Zhang 1Baojun Zhu 1,2Yutong Li 1,2,3Weiman Jiang 1,2[ ... ]Jie Zhang 3,8
Author Affiliations
Abstract
1 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
4 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
5 Department of Astronomy, Beijing Normal University, Beijing 100875, China
6 National Laboratory on High Power Laser and Physics, Chinese Academy of Sciences, Shanghai 201800, China
7 Shanghai Institute of Laser Plasma, Shanghai 201800, China
8 Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
As a promising new way to generate a controllable strong magnetic field, laser-driven magnetic coils have attracted interest in many research fields. In 2013, a kilotesla level magnetic field was achieved at the Gekko XII laser facility with a capacitor–coil target. A similar approach has been adopted in a number of laboratories, with a variety of targets of different shapes. The peak strength of the magnetic field varies from a few tesla to kilotesla, with different spatio-temporal ranges. The differences are determined by the target geometry and the parameters of the incident laser. Here we present a review of the results of recent experimental studies of laser-driven magnetic field generation, as well as a discussion of the diagnostic techniques required for such rapidly changing magnetic fields. As an extension of the magnetic field generation, some applications are discussed.
lab astrophysics laser–plasma interaction magnetic field plasma astrophysics 
High Power Laser Science and Engineering
2018, 6(3): 03000e38
Author Affiliations
Abstract
1 Department of Astronomy, Beijing Normal University, Beijing 100875, China
2 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
3 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
4 National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
5 Research Center for Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
6 National Laboratory on High Power Laser and Physics, Chinese Academy of Sciences, Shanghai 201800, China
7 Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
We present laboratory measurement and theoretical analysis of silicon K-shell lines in plasmas produced by Shenguang II laser facility, and discuss the application of line ratios to diagnose the electron density and temperature of laser plasmas. Two types of shots were carried out to interpret silicon plasma spectra under two conditions, and the spectra from 6.6 ? to 6.85 ? were measured. The radiative-collisional code based on the flexible atomic code (RCF) is used to identify the lines, and it also well simulates the experimental spectra. Satellite lines, which are populated by dielectron capture and large radiative decay rate, influence the spectrum profile significantly. Because of the blending of lines, the traditional $G$ value and $R$ value are not applicable in diagnosing electron temperature and density of plasma. We take the contribution of satellite lines into the calculation of line ratios of He-$\unicode[STIX]{x1D6FC}$ lines, and discuss their relations with the electron temperature and density.
high energy density physics laser plasmas interaction plasmas astrophysics. 
High Power Laser Science and Engineering
2018, 6(2): 02000e31

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!